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Abstract

Scheduling for the flexible job-shop is very important in both fields of production management and

combinatorial optimization. However, it is quite difficult to achieve an optimal solution to this problem with

traditional optimization approaches owing to the high computational complexity. The combining of several

optimization criteria induces additional complexity and new problems. Particle swarm optimization is an

evolutionary computation technique mimicking the behavior of flying birds and their means of information

exchange. It combines local search (by self experience) and global search (by neighboring experience), possessing

high search efficiency. Simulated annealing (SA) as a local search algorithm employs certain probability to avoid

becoming trapped in a local optimum and has been proved to be effective for a variety of situations, including

scheduling and sequencing. By reasonably hybridizing these two methodologies, we develop an easily

implemented hybrid approach for the multi-objective flexible job-shop scheduling problem (FJSP). The results

obtained from the computational study have shown that the proposed algorithm is a viable and effective approach

for the multi-objective FJSP, especially for problems on a large scale.
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1. Introduction

Scheduling problems occur in all the economic domains, from computer engineering to

manufacturing techniques. Most scheduling problems are complex combinatorial optimization problems
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and very difficult to solve. The job-shop scheduling problem (JSP) is a branch of production scheduling,

which is among the hardest combinatorial optimization problems. The classical JSP consists in

scheduling a set of jobs on a set of machines with the objective to minimize a certain criterion, subject to

the constraint that each job has a specified processing order through all machines which are fixed and

known in advance. It is well known that this problem is NP-hard (Garey, Johnson, & Sethi, 1976). That

means with current algorithms even moderately sized problems cannot be solved to guaranteed

optimality. Many different approaches have been applied to JSP.

Although an optimal solution algorithm for the classical JSP has not been developed, there is a trend

in the research domain to solve a much more complex version of the problem. The problem is referred to

as the flexible job-shop scheduling problem (FJSP). FJSP is an extension of the classical JSP which

allows an operation to be processed by any machine from a given set. It incorporates all of the difficulties

and complexities of its predecessor JSP and is more complex than JSP because of the addition need to

determine the assignment of operations to machines. The scheduling problem of a FJSP consists of a

routing sub-problem, that is, assigning each operation to a machine out of a set of capable machines and

the scheduling sub-problem, which consists of sequencing the assigned operations on all machines in

order to obtain a feasible schedule minimizing a predefined objective function. The FJSP mainly

presents two difficulties. The first one is to assign each operation to a machine, and the second one is to

schedule these operations in order to make a predefined objective minimal.

The literature of FJSP is considerably sparser than the literature of JSP. Bruker and Schlie (1990)

were among the first to address this problem. They develop a polynomial algorithm for solving the

flexible job-shop problem with two jobs. For solving the realistic case with more than two jobs, two

types of approaches have been used: hierarchical approaches and integrated approaches. In hierarchical

approaches assignment of operations to machines and the sequencing of operations on the resources or

machines are treated separately, i.e. assignment and sequencing are considered independently, whereas

in integrated approaches, assignment and sequencing are not differentiated. Hierarchical approaches are

based on the idea of decomposing the original problem in order to reduce its complexity. This type of

approach is natural for FJSP since the routing and the scheduling sub-problems can be separated.

Brandimarte (1993) was the first to use this decomposition for the FJSP. He solved the routing sub-

problem using some existing dispatching rules and then focused on the scheduling sub-problem, which is

solved using a taboo search heuristic. Tung, Li, and Nagi (1999) developed a similar approach for

scheduling a flexible manufacturing system. Recently, Kacem, Hammadi, and Borne (2002a,b) proposed

a genetic algorithm controlled by the assigned model which is generated by the approach of localization

(AL). And they used it to mono-objective and multi-objective FJSP. Integrated approaches were used by

considering assignment and scheduling at the same time. Hurink, Jurisch, and Thole (1994) proposed a

taboo search heuristic in which reassignment and rescheduling are considered as two different types of

moves. The integrated approach which had been presented by Dauzere-Peres and Paulli (1997) was

defined a neighborhood structure for the problem where there is no distinction between reassigning and

resequencing an operation. A taboo search procedure is proposed based on the neighborhood structure.

Mastrolilli and Gambardella (2002) improved Dauzere-Peres’ taboo search techniques and presented

two neighborhood functions. Most researchers were interested in applying taboo search techniques and

genetic algorithms to FJSP in the past.

In this research paper a practical hierarchical solution approach is proposed for solving multi-

objective FJSP. The proposed approach makes use of particle swarm optimization (PSO) to assign

operations on machines and simulated annealing (SA) algorithm to schedule operations on each
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machine. The considered objective is to minimize makespan (maximal completion time), the total

workload of machines, and the workload of the critical machine.

The remainder of the paper is organized as follows: the notation and problem description are

introduced in Section 2. Section 3 describes standard PSO algorithm and how to apply it to multi-

objective FJSP. Section 4 focuses on basic ingredients of SA, introducing some rules of parameters

selection. The hybrid optimization algorithm is described in Section 5. In Section 6, computational

experiments performed with the new hybrid optimization approach for three representative instances of

FJSP are reported followed by the comparison to other heuristic methods. Some concluding remarks are

made in Section 7.
2. Problem formulation

The FJSP problem may be formulated as follows. There is a set of n jobs that plan to process on m

machines. The set machines is noted M,MZ{M1,M2,.Mm}. Each job j consists of a sequence of nj

operations (routing) Oj,1, Oj,2,.Oj,nj. Each routing has to be performed to complete a job. The execution

of each operation i of a job j (noted Oj,i) requires one machine out of a set of given machines called

Mj,i4M. The problem is thus to both determine an assignment and a sequence of the operations on all

machines that minimize some criteria. In this study, the following criteria are to be minimized:
F1
 makespan or maximal completion time of machines.
F2
 total workload of the machines, which represents the total working time of all machines.
F3
 critical machine workload, that is the machine with the biggest workload.
Many approaches have been developed in the domain of multi-objective meta-heuristic optimization.

We focus our presentation on evolutionary approaches that can be classified into three types (Hsu,

Dupas, Jolly, & Goncalves, 2002):
(i)
 The transformation towards a mono-objective problem consists of combining the different

objectives into a weighted sum.
(ii)
 The non-Pareto approach utilizes operators for processing the different objectives in a separated way.
(iii)
 The Pareto approach is directly based on the Pareto optimization concept. It aims at satisfy two

goals: first, converge to the Pareto front and also obtain diversified solutions scattered all over the

Pareto front.
The objective function in this paper is based on the first type. The weighted sum of the above three

objective values (F1, F2 and F3) is taken as the objective function (F(c)).

Hypotheses considered in this paper are the following:
†
 Setting up times of machines and move times between operations are negligible,
†
 Machines are independent from each other,
†
 Jobs are independent from each other,
†
 At a given time, a machine can only execute one operation. It becomes available to other operations

only if the operation which is processing is completed.
†
 There are no precedence constraints among the operations of different jobs.
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3. Assignment algorithm: particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary computation technique proposed by

Kennedy and Eberhart in 1995 (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995). The particle

swarm concept was motivated from the simulation of social behavior. The original intent was to

graphically simulate the graceful but unpredictable choreography of a bird flock. The PSO algorithm

mimics the behavior of flying birds and their means of information exchange to solve optimization

problems. PSO has been introduced as an optimization technique in real-number spaces. But many

optimization problems are set in a discrete space. Typical examples include problems that require

ordering and route planning, such as in scheduling and routing problems. In this paper we introduce a

method of converting domain to discrete domain for PSO and use it to assign operations to machines.

3.1. Standard PSO algorithm

PSO is an evolutionary algorithm which the system is initialized with a population (named swarm in

PSO) of random solutions. Each individual or potential solution, named particle, flies in the D-

dimensional problem space with a velocity which is dynamically adjusted according to the flying

experiences of its own and its colleagues. During the past years, researchers have explored several

models of PSO algorithm. In this paper, we use the global model equations as follows (Shi & Eberhart,

1999):

Vid ¼ W � Vid þ C1 � RandðÞ � ðpid KXidÞ þ C2 � randðÞ � ðPgd KXidÞ; (1a)

and

Xid Z Xid CVid; (1b)

where Vid, called the velocity for particle i, represents the distance to be travelled by this particle from

its current position, Xid represents the particle position, Pid which is also called pbest (local best

solution), represents ith particle’s best previous position, and Pgd, which is also called gbest (global

best solution), represents the best position among all particles in the swarm. W is inertial weight. It

regulates the trade-off between the global exploration and local exploitation abilities of the swarm. The

acceleration constants C1 and C2 represent the weight of the stochastic acceleration terms that pull

each particle toward pbest and gbest positions. Rand() and rand() are two random functions in the

range [0,1].

For Eq. (1a), the first part represents the inertia of previous velocity. The second part is the ‘cognition’

part, which represents the private thinking by itself. The third part is the ‘social’ part, which represents

the cooperation among the particles (Kennedy, 1997). The process of implementing the PSO algorithm

is as follows:
(1)
 Initialize a swarm of particles with random positions and velocities in the D-dimensional problem

space.
(2)
 For each particle, evaluate the desired optimization fitness function.
(3)
 Compare particle’s fitness value with particle’s pbest. If current value is better than pbest, then set

pbest value equal to the current value, and the pbest position equal to the current position in

D-dimensional space.
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(4)
Tabl

Exam

J1

J2

J3
Compare fitness evaluation value with the best swarm’s fitness obtained so far. If current value is

better than gbest, then reset gbest to the current particle’s fitness value.
(5)
 Change the velocity and position of the particle according to Eqs. (1a) and (1b) respectively.
(6)
 Loop to step (2) until a termination criterion is met, usually a sufficiently good fitness or a specified

number of generations.
In PSO, each particle of the swarm shares mutual information globally and benefits from the

discoveries and previous experiences of all other colleagues during the search process. PSO requires

only primitive and simple mathematical operators, and is computationally inexpensive in terms of both

memory requirements and time.
3.2. Encoding

The most important issue in applying PSO successfully to FJSP is to develop an effective ‘problem

mapping’ and ‘solution generation’ mechanism. If these two mechanisms are devised successfully, it is

possible to find good solutions for a given optimization problem in acceptable time. How to encode a

schedule to a search solution (i.e. finding a suitable mapping between problem solution and PSO

particle)? Firstly, we sequence the capable machines of an operation according to the increasing order of

processing time. If one machine’s processing time is equal to another, the lower order number of

machine has priority. After this course, we get different priority levels for all machines which process the

same operation. Then the particle position can be generated stochastically according to the order of

operations of different jobs. Because of a different priority level corresponding to a different machine, a

particle position is corresponding to a machine assignment of all operations.

To explain this approach, we choose the following example (with total flexibility, i.e. each machine

can be selected for an operation.) in Table 1.

The problem is to execute three jobs on four machines. The left side of the table is original data,

including jobs, operations, and processing times on different machines. On the right is the order of

priority (i.e. priority level, 1, 2, 3, or 4, and priority 1O2O3O4) of machines corresponding to each

operation. The particle’s position is a series of priority levels of assigned machines according to the

order of operations. A stochastic particle position is represented in Fig. 1.

In general, initial particles’ positions and initial particles’ velocities in the swarm are generated at

random. According to this approach to generate initial particles’ positions, search space can be dwindled
e 1

ple problem

Machine Priority order

M1 M2 M3 M4 1 2 3 N 4

O1,1 2 3 4 1 M4 M1 M2 M3

O1,2 3 1 8 2 M2 M4 M1 M3

O2,1 1 4 1 2 M1 M3 M4 M2

O2,2 5 3 2 9 M3 M2 M1 M4

O2,3 3 1 1 4 M2 M3 M1 M4

O3,1 7 6 3 5 M3 M4 M2 M1

O3,2 4 5 6 2 M4 M1 M2 M3



Fig. 1. A stochastic particle position representation.
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easily and this helps to improve the solution quality as well as search speed. For example, in Table 1 we

define priority level less than 4, then the machine on the right of broken line cannot be selected for an

operation, i.e. M3 cannot be selected for O1,1 and O1,2, and M2 cannot be selected for O2,1, etc.

Each particle’s position value represents priority level for each operation. So every bit of a particle’s

position should be integer. But after computation by Eqs. (1a) and (1b), some bits of a particle’s position

may appear real values such as 2.638, etc. It is meaningless for priority level. Therefore, in the algorithm

we usually round off the real optimum value to its nearest integer number. By this way, we convert a

continuous optimization problem to a discrete optimization problem.
3.3. Setting parameters

In Eq. (1a), inertial weight (W) is an important parameter to optimizing ability of PSO algorithm. A

large inertial weight facilities searching new areas while a small inertial weight facilities fine-searching

in the current search areas. Suitable selection of the inertial weight provides a balance between global

exploration and local exploitation, and results in less iteration to find a sufficiently good solution on the

average. Therefore, consider by linearly decreasing the inertial weight from a relatively large value to a

relatively small value through the course of the PSO run, the PSO tends to have more global search

ability at the beginning of the run while having more local search ability near the end of the run. For all

computational experiments in this paper, the inertial weight is set to the following equation.

W Z Wmax K
Wmax KWmin

itermax

iter; (2)

where
Wmax
 initial value of weighting coefficient,
Wmin
 final value of weighting coefficient,
itermax
 maximum number of iterations or generation,
iter
 current iteration or generation number.
The acceleration constants C1 and C2 in Eq. (1a) adjust the amount of ‘tension’ in the PSO system.

Low values allow particles to roam far from target regions before being tugged back, while high values

result in abrupt movement toward, or past, target regions (Eberhart & Shi, 2001).

By computation of Eqs. (1a) and (1b), the absolute value of Vid and Xid may be great. So the particle

may overshoot the problem space. Therefore, Vid and Xid should be limited to maximum velocity Vmax

and maximum position Xmax, which are two parameters specified by the user. Vmax serves as a constraint

to control the global exploration ability of a particle swarm. In this paper, the maximum velocity Vmax is
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set to maximal value of priority level (mpl), i.e. Vid is a value in the range [Kmpl, mpl]. The maximum

position Xmax is also set to mpl. Because Xid represents priority level, Xid must be a positive integer. So

Xid is an integer value in the range [1, mpl].
3.4. Fitness function

Fitness is used as the performance evaluation of particles in the swarm. Fitness is usually represented

with a function f:S/RC (S is the set of candidate schedules, and RC is the set of positive real values).

Mapping an original objective function value to a fitness value that represents relative superiority of

particles is a feature of fitness function. The objective function (F(c)) can be represented as follows

according to the description in Section 2.

FðcÞ Z w1 !F1ðcÞCw2 !F2ðcÞCw3 !F3ðcÞ:

We define the fitness function (fit(c)) is equal to the objective function, i.e.

fitðcÞ Z FðcÞ:

The objective is to minimize F(c), i.e. fit(c). So particle with the lowest fitness will be superior to other

particles and should be reserved in search process.
4. Scheduling algorithm: simulated annealing algorithm

Ever since its introduction, based on the joint efforts by Kirkpatrick, Gelatt, and Vecchi (1983),

simulated annealing algorithm has produced good results for large combinatorial optimization problems,

particularly in scheduling problems. On the one hand, the algorithm can be considered as a

generalization of the well-known iterative improvement approach to combinatorial optimization

problems, on the other hand, it can be viewed as an analogue of an algorithm used in statistical physics

for computer simulation of the annealing of a solid to the state with minimum energy (Van Laarhoven,

Aarts, and Lenstra, 1992).

SA approach can be viewed as an enhanced version of local search or iterative improvement, in which

an initial solution is repeatedly improved by making small local alteration until no such alteration yields

a better solution. SA randomizes this procedure in a way that allows occasional alterations that worsen

the solution in an attempt to increase the probability of leaving a local optimum. The application of SA

as a local search algorithm assumes a cost function (fitness function in this paper) calculated for each

possible solution, a neighborhood comprising alternative solutions to a given solution, and a mechanism

for generating possible solutions.

After an assignment process by PSO, the scheduling process can be completed via a SA algorithm

with satisfactory scheduling results quickly.
4.1. SA algorithm

Starting from an initial solution, SA generates a new solution S 0 in the neighborhood of the

original solution S. Then, the change of objective function values, DZf(S 0)Kf(S), is calculated.
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For a minimization problem, if D!0, the transition to the new solution is accepted. If DR0, then the

transition to the new solution is accepted with probability, usually denoted by the function, exp(KD/T),

where T is a control parameter called the temperature. SA algorithm generally starts from a high

temperature and then the temperature is gradually lowered. At each temperature, a search is carried out

for a certain number of iterations, called the epoch length. When the termination condition is satisfied,

the algorithm will stop.
4.2. Neighborhood solutions

In SA search algorithm, the choice of neighborhood can greatly influence algorithm performance.

While choosing a rich neighborhood containing a large number of candidate solutions will increase the

likelihood of finding good solutions, the computation time required to search from the available

neighbors will also increase. As a simple method for generating neighborhood solutions, the pair-

exchange method is used in a particle position according to the machine order in this paper. Assuming p

operations assigned on a machine, the pair-exchange method is shown as follows:

ð142Þ; ð243Þ; ð344Þ;.ðp K14pÞ

Because the code of a particle’s position is encoded according to the order of operation, it is not

suitable for application in SA algorithm. The code should be switched from operation-based to machine-

based. We also consider the example of Fig. 1. The switched code based machine order is shown in

Fig. 2. By exchanging operations on the same machine of a particle and evaluating pair-exchange result

each time, we can get satisfactory search results quickly.
4.3. Cooling schedule

SA process can be controlled by the cooling schedule. In general, the cooling schedule is specified by

several parameters and methods, namely the initial temperature T0, the epoch length L, the rule

designated how to lower the temperature, and the termination condition.

A proper initial temperature should be high enough so that all possible solutions have equal chance of

being visited. It produces much effect on computation time. Initial temperature T0 in this paper is set by

T0ZDfmax, where Dfmax is the maximal difference in fitness value between any two neighboring

solutions. And it should be adjusted experimentally.

The epoch length L denotes the number of moves made at the same temperature. According to the

method of generating neighborhood solutions, the epoch length can be set as SN, where SN is the number

of neighborhood solutions for a given solution. In our algorithm SN is determined by the assignment of

operations on each machine.

In SA algorithm, the temperature should be lowered in such a way that the cooling process would not

take too long. The exponential cooling scheme specifies the temperature with TkZBTkK1, (during the kth

epoch (kZ1, 2, 3,.), where B2(0,1) is temperature decreasing rate) which is often believed to be
Fig. 2. Switched code based machine order in SA.
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excellent in the current literature, since it provides a rather good compromise between a computationally

fast schedule and the ability to reach low-energy state. The more the value of decreasing rate B is, the

slower the dropping process of temperature goes on, and therefore, much more moves are required

before the process is terminated.

As a criterion to terminate the algorithm, we use a simple and general way, in which a termination

temperature Tend is set. If current temperature Tk!Tend, the algorithm will be terminated. Tend, with a

value near zero, influences the final result of the algorithm directly. Smaller Tend implies finer search in

problem space when algorithm termination is forthcoming.
5. Hybrid algorithm

Briefly, our hybrid algorithm can be summarized with the following pseudo-code in Fig. 3. It can be

seen that during the hybrid search process PSO provides initial solutions for SA. Each particle’s fitness

value is computed by SA algorithm. In fact SA algorithm is only a sub-algorithm for the entire search

process. PSO uses the solutions evaluated by SA to continue evolution.
6. Computational results

To illustrate the effectiveness and performance of algorithm proposed in this paper, three representative

instances (represented by problem n!m) based on practical data have been selected to compute. Three

problem instances (problem 8!8, problem 10!10 and problem 15!10) are all taken from Kacem et al.

(2002a,b). We have applied the hybrid algorithm (PSOCSA) to them with following parameters (Table 2).
6.1. Problem 8!8

This is an instance of partial flexibility, i.e. some operations are only achievable on a part of the

available machines set. In the original data of Table 3, symbol ‘X’ indicates that the assignment is

impossible. According to our approach, we only need to switch symbol ‘X’ to infinity, such as 9999.

Applying this approach implicates the processing time on impossible machine is infinite and the priority

level of machine is lower than other machines. So the machines with infinite processing time (such as

9999) cannot be selected for operations. By this way the partial flexibility problem can be converted to a

total flexibility problem.

The obtained solutions by our hybrid algorithm are characterized by the following values:

Soultion 1 : Wtd Z 75; MaxðWkÞ Z 12; Makespan Z 15

Soultion 2 : Wtd Z 73; MaxðWkÞ Z 13; Makespan Z 16

where, Wtd is used to represent total workload of all machines, and Max(Wk) represents the critical

machine workload. Figs. 4 and 5 show the results in the form of a Gantt chart. Numbers (in the form of

[job, operation]) inside the blocks are the operations associated with the jobs, and blocks with bias

represent the machine idle periods.



Fig. 3. Hybrid optimization algorithm with pseudo-code.

Table 2

Hybrid algorithm parameters

PSO algorithm SA algorithm

n!m

8!8 10!10 15!10

Swarm size 100

Maximal generation 50

Wmax 1.2 T0 3 5 10

Wmin 0.4 Tend 0.01 0.01 0.01

C1/C2 2.0 B 0.9 0.9 0.95
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Fig. 4. Optimization solution 1 of problem 8!8 (WtdZ75, Max(Wk)Z12, MakespanZ15).

Table 3

Problem 8!8 with 27 operation (partial flexibility)

M1 M2 M3 M4 M5 M6 M7 M8

J1 O1,1 5 3 5 3 3 X 10 9

O1,2 10 X 5 8 3 9 9 6

O1,3 X 10 X 5 6 2 4 5

J2 O2,1 5 7 3 9 8 X 9 X

O2,2 X 8 5 2 6 7 10 9

O2,3 X 10 X 5 6 4 1 7

O2,4 10 8 9 6 4 7 X X

J3 O3,1 10 X X 7 6 5 2 4

O3,2 X 10 6 4 8 9 10 X

O3,3 1 4 5 6 X 10 X 7

J4 O4,1 3 1 6 5 9 7 8 4

O4,2 12 11 7 8 10 5 6 9

O4,3 4 6 2 10 3 9 5 7

J5 O5,1 3 6 7 8 9 X 10 X

O5,2 10 X 7 4 9 8 6 X

O5,3 X 9 8 7 4 2 7 X

O5,4 11 9 X 6 7 5 3 6

J6 O6,1 6 7 1 4 6 9 X 10

O6,2 11 X 9 9 9 7 6 4

O6,3 10 5 9 10 11 X 10 X

J7 O7,1 5 4 2 6 7 X 10 X

O7,2 X 9 X 9 11 9 10 5

O7,3 X 8 9 3 8 6 X 10

J8 O8,1 2 8 5 9 X 4 X 10

O8,2 7 4 7 8 9 X 10 X

O8,3 9 9 X 8 5 6 7 1

O8,4 9 X 3 7 1 5 8 X
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Fig. 5. Optimization solution 2 of problem 8!8 (WtdZ73, Max(Wk)Z13, MakespanZ16).
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Table 4 shows our hybrid algorithm’s effectiveness by comparison with other algorithms. The column

labeled ‘Temporal Decomposition’ refers to F. Chetouane’s method (Kacem et al., 2002a) and the next

column labeled ‘classic GA’ refers to classical genetic algorithm. ‘Approach by Localization’ and

‘ALCCGA’ are two algorithms by Kacem et al. (2002a,b).
6.2. Problem 10!10

To evaluate the effectiveness of our algorithm, we have applied it to the instance in Table 5.

The computational results by hybrid algorithm based on PSO and SA are shown in the following:

Wtd Z 44; MaxðWkÞ Z 6; Makespan Z 7

Its Gantt chart representation is shown in Fig. 6.

The comparison of our hybrid algorithm with other algorithms is shown in Table 6.
6.3. Problem 15!10

Larger scale instance is chosen to display the optimizing ability of our hybrid algorithm. This instance

has 15 jobs with 56 operations that plan to be processed on 10 machines with total flexibility (see

Table 7). It is a challenge to our algorithm indeed.
Table 4

Comparison of results on problem 8!8 with 27 operations

Temporal

decomposition

Classic GA Approach by

localization

ALCCGA PSOCSA

Makespan 19 16 16 15 16 15 16

Wtd 91 77 75 79 75 75 73



Table 5

Problem 10!10 with 30 operations (total flexibility)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 O1,1 1 4 6 9 3 5 2 8 9 5

O1,2 4 1 1 3 4 8 10 4 11 4

O1,3 3 2 5 1 5 6 9 5 10 3

J2 O2,1 2 10 4 5 9 8 4 15 8 4

O2,2 4 8 7 1 9 6 1 10 7 1

O2,3 6 11 2 7 5 3 5 14 9 2

J3 O3,1 8 5 8 9 4 3 5 3 8 1

O3,2 9 3 6 1 2 6 4 1 7 2

O3,3 7 1 8 5 4 9 1 2 3 4

J4 O4,1 5 10 6 4 9 5 1 7 1 6

O4,2 4 2 3 8 7 4 6 9 8 4

O4,3 7 3 12 1 6 5 8 3 5 2

J5 O5,1 7 10 4 5 6 3 5 15 2 6

O5,2 5 6 3 9 8 2 8 6 1 7

O5,3 6 1 4 1 10 4 3 11 13 9

J6 O6,1 8 9 10 8 4 2 7 8 3 10

O6,2 7 3 12 5 4 3 6 9 2 15

O6,3 4 7 3 6 3 4 1 5 1 11

J7 O7,1 1 7 8 3 4 9 4 13 10 7

O7,2 3 8 1 2 3 6 11 2 13 3

O7,3 5 4 2 1 2 1 8 14 5 7

J8 O8,1 5 7 11 3 2 9 8 5 12 8

O8,2 8 3 10 7 5 13 4 6 8 4

O8,3 6 2 13 5 4 3 5 7 9 5

J9 O9,1 3 9 1 3 8 1 6 7 5 4

O9,2 4 6 2 5 7 3 1 9 6 7

O9,3 8 5 4 8 6 1 2 3 10 12

J10 O10,1 4 3 1 6 7 1 2 6 20 6

O10,2 3 1 8 1 9 4 1 4 17 15

O10,3 9 2 4 2 3 5 2 4 10 23
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The best solution obtained by proposed hybrid algorithm is shown by the following values:

Wtd Z 91; MaxðWkÞ Z 11; Makespan Z 12

The schedule corresponding to the best solution is represented by Gantt chart in Fig. 7.

We present the comparison with Kacem et al. (2002b) algorithm in Table 8. From Table 8 we know

the new hybrid algorithm makes us reduce the makespan (12 instead of 23) and get the decline nearly

10% in terms of objective function value. It is more appropriate for solving problems on a large scale by

our algorithm.
7. Conclusions

We have discussed a new approach based on the hybridization of PSO and SA for solving multi-

objective flexible job-shop scheduling problems. Although it does not guarantee the optimality, such an



Fig. 6. Optimization solution of problem 10!10 (WtdZ44, Max(Wk)Z6, MakespanZ7).
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approach provides solutions with good quality in a reasonable time limit. The performance of the new

approach is evaluated in comparison with the results obtained from other authors’ algorithms for three

representative instances. The obtained results show the effectiveness of the proposed approach.

Although there is a huge amount of literature on classical JSP, the FJSP does not have a rich literature.

Therefore, there is still a need to develop effective approach for this complex problem. The proposed

hybrid approach in this paper can be considered as effective mechanisms from this point of view.

There are a number of research directions that can be considered as useful extensions of this research.

Although the proposed algorithm is tested with three representative instances, a more comprehensive

computational study should be made to test the efficiency of proposed solution technique. Research on

generalization of such an approach for solving other multi-objective optimization problems should be an

interesting subject. Furthermore, applying PSO to other combinatorial optimization problems is also

possible in further research.
Table 6

Comparison of results on problem 10!10 with 30 operations

Temporal

decomposition

Classic GA Approach by

localization

ALCCGA PSOCSA

Makespan 16 7 8 7 7

Wtd 59 53 46 45 44

Max(Wk) 16 7 6 5 6



Table 7

Problem 15!10 with 56 operations (total flexibility)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 O1,1 1 4 6 9 3 5 2 8 9 4

O1,2 1 1 3 4 8 10 4 11 4 3

O1,3 2 5 1 5 6 9 5 10 3 2

O1,4 10 4 5 9 8 4 15 8 4 4

J2 O2,1 4 8 7 1 9 6 1 10 7 1

O2,2 6 11 2 7 5 3 5 14 9 2

O2,3 8 5 8 9 4 3 5 3 8 1

O2,4 9 3 6 1 2 6 4 1 7 2

J3 O3,1 7 1 8 5 4 9 1 2 3 4

O3,2 5 10 6 4 9 5 1 7 1 6

O3,3 4 2 3 8 7 4 6 9 8 4

O3,4 7 3 12 1 6 5 8 3 5 2

J4 O4,1 6 2 5 4 1 2 3 6 5 4

O4,2 8 5 7 4 1 2 36 5 8 5

O4,3 9 6 2 4 5 1 3 6 5 2

O4,4 11 4 5 6 2 7 5 4 2 1

J5 O5,1 6 9 2 3 5 8 7 4 1 2

O5,2 5 4 6 3 5 2 28 7 4 5

O5,3 6 2 4 3 6 5 2 4 7 9

O5,4 6 5 4 2 3 2 5 4 7 5

J6 O6,1 4 1 3 2 6 9 8 5 4 2

O6,2 1 3 6 5 4 7 5 4 6 5

J7 O7,1 1 4 2 5 3 6 9 8 5 4

O7,2 2 1 4 5 2 3 5 4 2 5

J8 O8,1 2 3 6 2 5 4 1 5 8 7

O8,2 4 5 6 2 3 5 4 1 2 5

O8,3 3 5 4 2 5 49 8 5 4 5

O8,4 1 2 36 5 2 3 6 4 11 2

J9 O9,1 6 3 2 22 44 11 10 23 5 1

O9,2 2 3 2 12 15 10 12 14 18 16

O9,3 20 17 12 5 9 6 4 7 5 6

O9,4 9 8 7 4 5 8 7 4 56 2

J10 O10,1 5 8 7 4 56 3 2 5 4 1

O10,2 2 5 6 9 8 5 4 2 5 4

O10,3 6 3 2 5 4 7 4 5 2 1

O10,4 3 2 5 6 5 8 7 4 5 2

J11 O11,1 1 2 3 6 5 2 1 4 2 1

O11,2 2 3 6 3 2 1 4 10 12 1

O11,3 3 6 2 5 8 4 6 3 2 5

O11,4 4 1 45 6 2 4 1 25 2 4

J12 O12,1 9 8 5 6 3 6 5 2 4 2

O12,2 5 8 9 5 4 75 63 6 5 21

O12,3 12 5 4 6 3 2 5 4 2 5

O12,4 8 7 9 5 6 3 2 5 8 4

J13 O13,1 4 2 5 6 8 5 6 4 6 2

O13,2 3 5 4 7 5 8 6 6 3 2

O13,3 5 4 5 8 5 4 6 5 4 2

O13,4 3 2 5 6 5 4 8 5 6 4

(continued on next page)
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Table 7 (continued)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J14 O14,1 2 3 5 4 6 5 4 85 4 5

O14,2 6 2 4 5 8 6 5 4 2 6

O14,3 3 25 4 8 5 6 3 2 5 4

O14,4 8 5 6 4 2 3 6 8 5 4

J15 O15,1 2 5 6 8 5 6 3 2 5 4

O15,2 5 6 2 5 4 2 5 3 2 5

O15,3 4 5 2 3 5 2 8 4 7 5

O15,4 6 2 11 14 2 3 6 5 4 8

Fig. 7. Optimization solution of problem 15!10 (WtdZ91, Max(Wk)Z11, MakespanZ12).

Table 8

Comparison of results on problem 15!10 with 56 operations

ALCCGA PSOCSA

Makespan 23 24 12

Wtd 95 91 91

Max(Wk) 11 11 11
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